Ingeniería en Gestión Industrial Métodos y técnicas de uso tecnológico Unidad 4. Administración de operaciones. Actividad 1. Pronósticos Móviles

Ingeniería en Gestión Industrial Métodos y técnicas de uso tecnológico Unidad 4. Administración de operaciones. Actividad 1. Pronósticos Móviles Licenciatura en Ingeniería en Gestión Industrial Métodos y técnicas de uso…

Continue Reading Ingeniería en Gestión Industrial Métodos y técnicas de uso tecnológico Unidad 4. Administración de operaciones. Actividad 1. Pronósticos Móviles

Modelado de un sistema de control con la descripción del modelo matemático óptimo para una empresa determinada.

Modelado de un sistema de control con la descripción del modelo matemático óptimo para una empresa determinada. Reporte Nombre: José Leonardo Hernández EstradaMatrícula: 2854807Nombre del curso: Ingeniería de controlNombre del…

Continue Reading Modelado de un sistema de control con la descripción del modelo matemático óptimo para una empresa determinada.

Tema: Cuerpos Rígidos Sistemas Equivalentes de Fuerza Mecánica Vectorial para Ingenieros Estática de Beer & Jhonston novena edición

Tarea#2  Tema: Cuerpos Rígidos Sistemas Equivalentes de  Fuerza Paralelo: 1 Texto  Guía: Mecánica Vectorial para Ingenieros Estática de Beer & Jhonston novena edición Resolver los ejercicios del capítulo 3 del…

Continue Reading Tema: Cuerpos Rígidos Sistemas Equivalentes de Fuerza Mecánica Vectorial para Ingenieros Estática de Beer & Jhonston novena edición

There is an electric field of magnitude 150. N/C directed everywhere downward, near the surface of the Earth. What is the net electric charge on the Earth? You treat the Earth as a spherical conductor of radius 6371. km. What is the electrostatic potential at the Earth’s surface, if the potential is taken to be zero at infinity? Using any needed results from Problem 1 above, calculate the total energy associated with the electric charge or electric field of the Earth. HINT: You can treat the Earth as a charged capacitor.|

There is an electric field of magnitude 150. N/C directed everywhere downward, near the surface of the Earth. What is the net electric charge on the Earth? You treat the…

Continue Reading There is an electric field of magnitude 150. N/C directed everywhere downward, near the surface of the Earth. What is the net electric charge on the Earth? You treat the Earth as a spherical conductor of radius 6371. km. What is the electrostatic potential at the Earth’s surface, if the potential is taken to be zero at infinity? Using any needed results from Problem 1 above, calculate the total energy associated with the electric charge or electric field of the Earth. HINT: You can treat the Earth as a charged capacitor.|

Question 1: Assume that the electric field between two charged parallel plates has a magnitude of 200 V/m. Find the change in the electric potential from one point to another in the electric field, for the following three cases: a) 20 cm in the direction of the electric field b) 20 cm in a direction perpendicular to the electric field. c) 3 cm in the direction of the electric field, then 4 cm perpendicular to the field, and then 5 cm back to the original position.

Question 1: Assume that the electric field between two charged parallel plates has a magnitude of 200 V/m. Find the change in the electric potential from one point to another…

Continue Reading Question 1: Assume that the electric field between two charged parallel plates has a magnitude of 200 V/m. Find the change in the electric potential from one point to another in the electric field, for the following three cases: a) 20 cm in the direction of the electric field b) 20 cm in a direction perpendicular to the electric field. c) 3 cm in the direction of the electric field, then 4 cm perpendicular to the field, and then 5 cm back to the original position.

Making appropriate use fo resistor combination techniques, calculate i3, and Vx in the circuit below. 32 (3 l.2 32 52 3 be Using resistace combination and current division as appropriate, determine values of i1, i2, and V3 in the circuit below. In the circuit below, only the voltage Vx is of interest. Simplify the circuit using appropriate resistor combinations and iteratively employ voltage division to determine Vx.

Making appropriate use fo resistor combination techniques, calculate i3, and Vx in the circuit below. 32 (3 l.2 32 52 3 be Using resistace combination and current division as appropriate,…

Continue Reading Making appropriate use fo resistor combination techniques, calculate i3, and Vx in the circuit below. 32 (3 l.2 32 52 3 be Using resistace combination and current division as appropriate, determine values of i1, i2, and V3 in the circuit below. In the circuit below, only the voltage Vx is of interest. Simplify the circuit using appropriate resistor combinations and iteratively employ voltage division to determine Vx.